

291086 [1] May 2025

Multi-Layer Perceptron Model for Multi-Country Crop

Yield Predictions

Matthew A. Ford

Department of Informatics, University of Sussex, BN1 9QH, UK

 In this report, a multilayer perceptron model

(MLP) is created to predict the yields of crops

given a countries agricultural and

environmental data. This model is a prediction

model and therefore considers the data from

previous years to predict the yield from the

following year. This form of MLP is known as

an autoregressive model.

The structure of this report is split into four

main sections. First, the performance of the

system is analysed. Following this is the model

architecture, including the techniques used for

optimisation. Then, the features and labels

passed to the model are discussed before finally,

the preprocessing techniques are outlined and

justified.

Together, these sections aim to provide a clear

understanding on how the MLP was

constructed, optimised, trained and evaluated

for the task of multi-country yield prediction.

1. Performance

 This section discusses how the data was split

for training and validation before evaluating the

metrics for the model’s performance.

1.1 | Splitting the Data

 To create the datasets, a sliding window

approach was used. This method segments the

year data into overlapping sequences, known as

“windows”. Each widow has the same fixed

length and captures the input features

(discussed in section 3) for a given number of

years (window size).

This data is then paired with the yield data (𝑦𝑡)

for the following year. This setup allows the

model to predict the next year’s crop yields by

identifying the patterns in the window data

from a given number of past years.

𝐷𝑎𝑡𝑎𝑤=3 = [[𝑋𝑡−3, 𝑋𝑡−2, 𝑋𝑡−1], 𝑦𝑡]

This makes a model that can capture temporal

dependencies which is key to a time-series style

model. As a result, this makes the model

generalize better for predicting yields in unseen

years.

To split the data into a training and validation

set, all years that have a target year of 2020 or

later, are used for validation, while the previous

sequences are for training. As the data provided

ranged from 2010 to 2022, this meant that there

was approximately a 75:25 split.

Each input had the size:

1 + (45 ∗ 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒) + 102

Where there are 45 features per window, one

country ID and 102 crop yields. This will be

further discussed in section 3.

291086 [2] May 2025

Once the model had been trained for several

epochs using the windows of data for each

country, the metrics for evaluation could be

calculated.

1.2 | Evaluation Metrics

 The main metrics used to evaluate the model

are the mean-squared error (MSE), R-squared

value (𝑅2), the mean-absolute error (MAE),

and the average distance correlation. All of

which are shown in Table 1.

Metric Value

Mean Squared Error 6,531,575

Mean Absolute Error 656.9

R-Squared 0.875

Avg. Distance Correlation 0.947

Table 1: Evaluation Metric Values for the Final Model.

Before any metrics could be calculated, it was

important to un-scale the predictions and

targets. This made sure that the metrics were

calculated with the original units.

As the yield values could never be negative, it

was made sure that all predictions were clipped

at 0 if they happened to be negative.

MSE is calculated by averaging the differences

between the predicted and actual values.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

The model achieved a MSE of ~6.5 million on

the validation dataset. While at first this value

seems large, when observed relative to the

magnitude of the yield values predicted, it is not

surprising to see.

The crop yields in the dataset can range from 0

to the tens of thousands, this means that a high

MSE is generally expected, especially in cases

where the predictions deviate greatly from

high-yield crops. Even a few deviations can

cause the value to increase significantly as MSE

tends to be sensitive to outliers. This made it a

good metric to use as the loss measure for

optimisation, as a lower score means the model

is generally closer to the true values. However,

it is not the most informative metric for

analysis.

Instead of MSE, other metrics such as 𝑅2 value,

MAE and distance correlation can provide a

better understanding of the model’s

performance.

The MAE is the mean of the magnitude of

errors.

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂

𝑛

𝑖=1

|

This shows that the model predictions were off

by 656.9 units on average. MAE is less

sensitive to deviations and therefore is a better

way of assessing a model where the output is so

high. Hence this is a better way of building a

picture of the model’s performance in this

instance.

The 𝑅2 value gives an insight into the

proportion of the variance in the target yield

that can be explained by the model. The closer

this value is to 1.0, the more accurate the model

is. It is calculated using the sum of the squared

errors, alongside the variance in the actual

values and their means.

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

A higher 𝑅2 value implies the model has a

better predictive accuracy. An 𝑅2 value of 0.875

suggests that the model can explain 87.5% of

the variance in the given crop yield data. This

means that the model has learnt patterns within

the input features and is able to account for most

fluctuations in the yields.

While a value of 1.0 is ideal, 0.875 is still

considerably strong given the complexity of

real-world data as this is generally prone to

containing a large amount of noise.

The average distance correlation measure

captures linear and non-linear associations

between datasets and helps to show how

strongly the predictions are related to the actual

yields of each crop.

291086 [3] May 2025

Most yield predictions have a high distance

correlation, with the average being 0.947. This

average suggests that the model is

understanding the underlying structure of the

data significantly well and therefore is showing

the model’s ability to predict with the same

complexity as the true yields.

As both the 𝑅2 value and distance correlation

are high, this means the model is accurate in

both a linear and non-linear sense.

Figure 1 shows the mean predicted and actual

yields of all crops plotted with respect to each

other. The closer the points are to the linear line,

the more accurate the average prediction was.

Figure 1: Mean Predicted vs Actual Yields per Crop.

The graph shows that the average predictions

are generally very close to the actual yield

values. Therefore, reinforcing the conclusions

given by the 𝑅2 and distance correlation values.

1.3 | Performance Conclusion

 To conclude, the metrics used to evaluate the

model show that it has learnt the underlying

patterns in the data very well. Having both the

𝑅2 value and average distance correlation being

high, it shows that the model has captured linear

and non-linear trends which shows its ability to

decipher the complex patterns that inherently

come from real-world data. This therefore

results in accurate and stable yield predictions.

2. Model

 This section discusses the model architecture

as well as the parameters chosen to optimise,

and the process used to do so. Also, the problem

of overfitting is discussed alongside the choices

made to prevent it.

The hyperparameter values used to achieve the

results in section 1.2 are shown in Table 2.

Hyperparameter
Optimisation

Result

Optimiser AdamW

Activation Function ReLU

LR Scheduler ReduceLROnPlateau

Window Size 7

Batch Size 70

Dropout 0.005

Learning Rate 0.001878

Weight Decay 6.9e-7

Table 2: Gene values from the best performing genome at

the end of the genetic algorithm.

The optimisation process to get these values is

later discussed in Section 2.2.

2.1 | Model Architecture

 The decision made for the model was to

allow it to train on all countries with viable data.

Then, to keep the output consistent, each

prediction will output 102 numbers - one for

each crop.

To create a model that was appropriate for this

task, there had to be some way to outline

region-specific characteristics. To do this, the

model had a layer for country embeddings

which transformed each country ID to a vector

of a specified size.

This allowed for the country feature to be

learnable instead of using a simple one-hot

encoding. This country vector was then

concatenated with the input data to create the

model input.

𝑋𝑖𝑛 = [𝐷𝑎𝑡𝑎𝑤=𝑖 , 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑣𝑒𝑐]

If the model was training, the input data would

also include the yields for the target year.

𝑋𝑖𝑛 = [𝐷𝑎𝑡𝑎𝑤=𝑖 , 𝑌𝑖𝑒𝑙𝑑𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑣𝑒𝑐]

291086 [4] May 2025

Then the model follows a simple feed-forward

neural network consisting of an input layer, two

hidden layers and the output layer.

The hidden layers are of sizes 1024 and 512.

Through trial and error, these were found to be

the most appropriate as the dataset is large and

complex.

After the input layer and each of the hidden

layers, the ReLU activation function was

applied to the data. This was essential to the

model as it introduces non-linearity for learning

complex patterns. ReLU makes sure there are

no negative inputs, making all negative values

0, as well as helping to avoid the ‘vanishing

gradient’ problem which in turn helps these

deep-learning models to train more effectively.

This was one of the optimised hyperparameters

and so the model with the lowest validation loss

was found using this function.

Proceeding each activation function, there was

then a dropout layer which again had a value

that was optimised to 0.005.

Both the dropout layer and country embeddings

help to encourage generalisation, which is key

to prediction models as it must account for

unseen data that may come from newly added

year or country data. This also helps to capture

the general trends that are not as specific to the

training data.

To train the model, the training data was fed

through for a given number of epochs. Each

time, the loss was calculated using the

MSELoss function. This the allowed for the

network weights to be adjusted through

backpropagation.

The process of backpropagation is essential for

a model to learn as it allows for the model to

recognise the adjustments needed to lower the

loss. The weights can then be adjusted to match

using an optimiser.

 The optimiser chosen through optimisation

was AdamW. This variant of the Adam

optimiser which has weight decay. Instead of

applying L2 regularisation by adding to the

gradients, AdamW applies the decay to the

weights directly after the gradients have been

updated. The benefit being that the model can

have better generalisation, and the training

process is more stable. Here the weight decay

was optimised to 6.9e-7.

Learning rate (LR) is important for a model to

train either efficiently or effectively. This value

controls the amount a model can update its

weights to account for the loss. With a static

learning rate, the model has the risk of

overshooting minima if the value is too high; or

having a training cycle that is extremely slow if

the value is too low. Therefore dynamic /

adaptable learning rates are a better choice.

To enhance the training efficiency, a learning

rate scheduler was chosen as an optimisable

hyperparameter which resulted in a

‘ReduceLROnPlateau’ scheduler being

employed. This scheduler starts off with a larger

learning rate of 0.001878 before reducing when

there is no improvement in the validation loss

after 3 epochs. This therefore helps the model

to converge more effectively and allows for

local or global minima to be reached.

In terms of model input, the window size is an

important factor. This determined the amount of

past information the model would train on. If

this was too high the model would have a

chance of overfitting, and if it was too low the

model may not have enough detail to predict

with an acceptable accuracy as historical

patterns may not be recognised. The

optimisation process found that the best

window size was 7.

The batch size was the final hyperparameter.

This determined the number of samples that

were processed before the weights within the

model were updated. Having larger batches

allows for smoother gradients, whereas smaller

batches can help with generalisation. Therefore,

a suitable balance had to be found.

After the optimisation process was completed,

a batch size of 70 was found to give the best

[performance. Allowing the model to train with

stability whilst upholding the generalisation

factor.

291086 [5] May 2025

2.2 | Parameter Optimisation

 The hyperparameters discussed had set

ranges and options for optimisation, which are

shown in Table 3.

Parameter Value Options

Optimiser Adam | AdamW
 4

Activation Function ReLU | LeakyReLU

| Tanh | Sigmoid

LR Scheduler

CosineAnnealingLR

| StepLR |

ReduceLROnPlateau

Window Size 1 – 9

Batch Size 16 – 256

Dropout 0.0 – 0.4

Learning Rate (LR) 0.00001 – 0.01

Weight Decay 0.0 – 0.00001

Table 3: Parameter Optimisation Options and Ranges.

Due to the large number of options, a parameter

sweep was seen as unsuitable, as the time taken

to cover every combination would be extremely

long. Instead, a genetic algorithm was created

to traverse the fitness landscape.

2.2.1 | Genetic Algorithm for Optimisation

 Genetic algorithms (GAs) take inspiration

from natural selection and are applied here to

optimise the hyperparameters of the model.

Each solution is represented as a genome,

where each gene corresponds to a choice for

one hyperparameter, as shown in Table 3.

𝐺𝑒𝑛𝑜𝑚𝑒𝑖 = [𝑔𝑒𝑛𝑒1, 𝑔𝑒𝑛𝑒2, … 𝑔𝑒𝑛𝑒𝑛]

To assess the suitability of the genomes, a

fitness function is used. This function trains a

model using the hyperparameters encoded in

the genome and evaluates its performance on

the validation set. For this instance, the fitness

is inversely proportional to the average

validation loss.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑠𝑠𝐴𝑣𝑔 + 1

The approach for the algorithm was to follow a

form of elitism. This means that genomes with

higher finesses are preferred and thus are

preserved through generations while also being

used for gene crossovers.

This algorithm has four main steps:

1. Initialisation: A population of 10

genomes is generated with random

hyperparameter values.

2. Evaluation: The population is passed

through a fitness function, and each

genome is evaluated.

3. Selection: The best overall genome,

along with the top two genomes of the

generation are preserved.

4. Crossover and Mutation: The rest of

the population is generated through a

gene crossover between two of the top

three genomes. This has an 80% chance

of happening, otherwise, a random

genome from the top three is chosen to

be directly copied.

To retain diversity through the

population, there is a 20% chance of

mutation per genome per generation.

Here, a single gene is randomly

changed to a new value from its

available choices in Table 3.

Each generation is one cycle of this process.

The algorithm was run for 100 generations,

with an increasingly larger number of training

epochs to allow for deeper exploration.

Figure 2 shows the best-found average

validation loss along with the best validation

loss per generation.

Figure 2: Best Found Genome for each Generation of the

Genetic algorithm (GA).

291086 [6] May 2025

As seen in the graph, the average validation loss

goes down quickly in the earlier generations

before the gradient decreases and the

exploration slows down. There is a lot of

fluctuation with the best per population results,

but the general trend remains the same.

In the later generations, the model seemingly

starts to converge, although it is shown that

there is a jump near the end. This is possibly due

to a jump between minima because of a random

mutation for one of the genes. This solidifies the

importance of maintaining population diversity

through mutation as without this, the population

would not be able to jump from local minima or

“traps”.

At the end of the optimisation process, the

results in Table 2 were produced. These values

achieved an average validation loss of 0.1812

and was used to train the final model evaluated

in Section 1.

2.3 | Overfitting

 To prevent overfitting, several techniques

were used in the model design. As discussed

earlier, a dropout layer was included to

randomly disable a fraction of the neurons

whilst training. This prevents the model from

becoming too dependent on any single pattern

in the training data.

Another technique used was L2 regularisation.

This is controlled through the weight decay

hyperparameter inputted into the optimiser.

This helps discourage larger weights and

therefore penalises the model if it becomes

overly complex.

As mentioned earlier, data windows also helped

to reduce overfitting as it forced the model to

focus on a specific time frame instead of having

all the available data for previous years.

3. Features & Labels

 This section outlines the features and labels

used to train and validate the model as well as

discussing the process of extracting these from

the provided dataset, giving reason to any

choices made along the way.

As mentioned in Section 1, a sliding window

approach was employed restructure the data

into a suitable format for an auto-regressive

time-series model. The main goal of this

approach was to allow the model to learn

meaningful temporal patterns across multiple

years, rather than treating each year’s data

individually.

As discussed in Section 1.1, each window

consists of the feature data for the previous x

years, where x is the size of the window. This

sequence is then paired with the crop yield data

for the subsequent year. This trains the model to

make predictions based on historical trends,

instead of using current-year features to predict

current-year yields.

Each input is generated per country to help

retain the regional and temporal context, which

is critical to this model as data varies across

different regions and countries.

3.1 | Features & Labels

 The input data was made up of several

agricultural and environmental values recorded

monthly for each country over several years.

These features were compiled from multiple

datasets after being processed and represented

the conditions that may influence crop

production. Applying a sliding window over 7

consecutive years allowed the model to capture

the relevant temporal patterns.

The output data was the crop yield values for

each country for the year following the input

data. This is a vector of size 102, where each

element corresponds to a predicted yield of a

specific crop.

Before training, the features and yield values

were scaled. This ensured that the data was

within the same range and as a result ensured

numerical stability between crop types. This

291086 [7] May 2025

was necessary due to the variation in yield

amounts as some countries produced crops that

others didn’t, and there could be thousands of

crops difference between yields. This in turn

helped the model learn more efficiently.

Each training example was therefore made from

a country’s feature window over 7 years, and

the yields for the following year as the label.

This allowed the model to learn to predict future

yields.

3.2 | Data Extraction

 The aim of the data extraction was to get

meaningful data with a low number of features

to then be used as inputs and outputs for

training and validating the model.

3.2.1 | Country Mapping

 Each feature’s dataset originally recorded

values at specific latitude and longitudes. To

train a country-specific model, it was vital to

assign each point to a country. This was

achieved using a provided lookup table which

contained:

• Country Centroids (Latitude &

Longitude)

• Approximate Country Radii

• Country Area

• Country Name

To keep the mapping process simple, each

country was approximated as a circle centred

around its centroid. This was deemed to be

sufficient for providing some geographical

accuracy alongside keeping the computation

efficient.

For each data point, the following process was

run:

• Calculated the Euclidean distance from

the point to each country’s centroid.

• Identified the nearest centroid using

these distances.

• Compared the distance to the nearest

centroid against an adjusted radius

which was calculated by scaling the

base radius by a factor derived from the

area. This helped better represent larger

countries or those with irregular

shapes.

• If the point was within the radius, the

data point was then assigned the

respective country.

• If there was no centroid to pass the

condition, the data was marked as

“OUT OF AREA” and removed from

the dataset.

To add, all countries that did not have any

matching yield data were removed as it was

necessary to at least have some yield data to

train the model accurately.

This process allowed for definitive and

consistent country aggregation and filtered out

any data points that were ambiguous or

irrelevant. This helped maintain the integrity

and clarity of the features for training.

3.2.2 | Data Aggregation

 To reduce the dimensionality of the data into

meaningful statistics, the remaining raw data

was aggregated.

Firstly, as there were multiple data points per

country per year, the data was grouped and

averaged to get a single row of data for each

country, consisting of the averages of every data

row. This was commonly on a per moth per year

basis.

291086 [8] May 2025

This was also done to the land coverage, where

the land cover percentage was averaged per

country with any data points that were found.

The data being given at a monthly resolution.

This meant that there were a significant number

of features causing the dimensionality to be

high.

 To reduce the complexity, and to make the data

more suited to predicting annual yields, the

monthly data was aggregated to a yearly scale

by using both the mean and standard deviation

of each feature (column) for every country per

year provided.

The average represented the annual level of

each feature, and the standard deviation

allowed for variability within the year to be

captured alongside strengthening the temporal

dynamics.

By performing these aggregations on the

feature data, the result was a compact but

informative summary. This helped to reduce the

noise in the data as well as making it easier for

the model to detect per-year patterns as the

temporal scale was now aligned between the

features and labels.

3.2.3 | Missing Output Data Handling

 Due to the nature of real-world data

collection, it is very probable that some data

may be missing. This would be challenging for

the sliding window approach as it relies on

continuous sequences data. If any point was

missing, the training sample would be invalid.

With the given dataset, there were no missing

years of feature data, but there were some years

missing for the label data. To address this, the

missing values were estimated using a linear

extrapolation algorithm. This was a simple

method that effectively estimates steady trends

over time. From analysing the yield values, this

was seemingly common.

By filling in these missing values, the

continuity of the data was upheld, no relevant

data was wasted, and the sliding window

approach could then be applied.

3.2.4 | Resulting Data

 For each country-year pair, the finalised

features included the mean and standard

deviations of the environmental and

agricultural data as well as a country ID that is

passed through the embedding layer discussed

in section 2.1.

3.3 | Reasoning

The steps taken to prepare the feature data were

made strategically. They aimed to reduce the

complexity and improve the generalisation.

As the monthly data had a high dimensionality,

applying a yearly aggregation to get the average

and standard deviation of each feature allowed

for the dataset to become easily managed and

helped reduce the noise that is inherent to

monthly data due to fluctuations. This pulled

the focus of the model onto long-term trends

which is ideal for predictive models.

The process of linear extrapolation provided

missing data with values estimated from

adjacent data. This helped to fill any gaps in a

logical way and ensured the temporal trend was

upheld.

Overall, by summarising the data to a yearly

resolution, the model was encouraged to learn

patterns from long-term trends instead of

having the risk of reacting to short-term

patterns. This again was a way of improving the

generalisation of the model whilst ensuring the

feature resolution matches that of the labels.

291086 [9] May 2025

4. Preprocessing

 This section discusses any other forms of

preprocessing performed on the data, any

problems that had to be rectified, and the

reasoning behind any choices made.

Whilst cleaning the land coverage dataset, there

were some large inconsistencies that were

discovered. The file itself contained data points

across the entire world, each with a latitude,

longitude, and 17 land classes, with percentage

values where the total is 100, showing how the

land at that point is split.

To visualise this data, the choice was made to

plot the points over a world map. This is where

the issues became apparent. Firstly, when

removing points that logically cannot have any

crops growing (such as ocean, and permanent

snow / ice), the points would be removed at

seemingly incorrect places.

This led to the conclusion that the 17 land

coverage percentage columns had been shifted

by 1 to the right. Therefore, this had to be

adjusted accordingly. However, this made the

second issue apparent.

It appeared that the data points were flipped in

the y-axis (latitude). And therefore, all the

values in that column had to be inversed. This

made the data consistent with the rest and

allowed for the remaining processing to go

ahead.

In terms of file column and row naming, any

columns that were addressed by name were

manually checked for spelling errors. Other

than this, calling columns by name was

generally avoided unless the dataset was one

that was custom as spelling errors can be

common for large datasets and it is not always

possible to check manually.

It was also noticed that the yield data had

uppercase naming, therefore when working

with these, it was made sure that all names were

lowered. To add, the yield data was mixed with

production data per crop, per country, per year.

These production data rows were removed as

they were deemed irrelevant to the model due

to it only predicting yields.

