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In this report, a multilayer perceptron model
(MLP) is created to predict the yields of crops
given a  countries  agricultural  and
environmental data. This model is a prediction
model and therefore considers the data from
previous years to predict the yield from the
following year. This form of MLP is known as
an autoregressive model.

The structure of this report is split into four
main sections. First, the performance of the
system is analysed. Following this is the model
architecture, including the techniques used for
optimisation. Then, the features and labels
passed to the model are discussed before finally,
the preprocessing techniques are outlined and
justified.

Together, these sections aim to provide a clear
understanding on how the MLP was
constructed, optimised, trained and evaluated
for the task of multi-country yield prediction.
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1. Performance

This section discusses how the data was split
for training and validation before evaluating the
metrics for the model’s performance.

1.1 | Splitting the Data

To create the datasets, a sliding window
approach was used. This method segments the
year data into overlapping sequences, known as
“windows”. Each widow has the same fixed
length and captures the input features
(discussed in section 3) for a given number of
years (window size).

This data is then paired with the yield data (y;)
for the following year. This setup allows the
model to predict the next year’s crop yields by
identifying the patterns in the window data
from a given number of past years.

Datay,-3 = [[Xt-3, X¢—2, Xe-1], Vil

This makes a model that can capture temporal
dependencies which is key to a time-series style
model. As a result, this makes the model
generalize better for predicting yields in unseen
years.

To split the data into a training and validation
set, all years that have a target year of 2020 or
later, are used for validation, while the previous
sequences are for training. As the data provided
ranged from 2010 to 2022, this meant that there
was approximately a 75:25 split.

Each input had the size:
14+ (45 * windowg;,,) + 102

Where there are 45 features per window, one
country ID and 102 crop yields. This will be
further discussed in section 3.
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Once the model had been trained for several
epochs using the windows of data for each
country, the metrics for evaluation could be
calculated.

1.2 | Evaluation Metrics

The main metrics used to evaluate the model
are the mean-squared error (MSE), R-squared
value (R?), the mean-absolute error (MAE),
and the average distance correlation. All of
which are shown in Table 1.

Metric Value

Mean Squared Error 6,531,575
Mean Absolute Error 656.9
R-Squared 0.875
Avg. Distance Correlation 0.947

Table 1: Evaluation Metric Values for the Final Model.

Before any metrics could be calculated, it was
important to un-scale the predictions and
targets. This made sure that the metrics were
calculated with the original units.

As the yield values could never be negative, it
was made sure that all predictions were clipped
at 0 if they happened to be negative.

MSE is calculated by averaging the differences
between the predicted and actual values.

1w o
MSE = EZ(yi - 3)
i=1

The model achieved a MSE of ~6.5 million on
the validation dataset. While at first this value
seems large, when observed relative to the
magnitude of the yield values predicted, it is not
surprising to see.

The crop yields in the dataset can range from 0
to the tens of thousands, this means that a high
MSE is generally expected, especially in cases
where the predictions deviate greatly from
high-yield crops. Even a few deviations can
cause the value to increase significantly as MSE
tends to be sensitive to outliers. This made it a
good metric to use as the loss measure for
optimisation, as a lower score means the model
is generally closer to the true values. However,
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it 1S not the most informative metric for
analysis.

Instead of MSE, other metrics such as R? value,
MAE and distance correlation can provide a
better understanding of the model’s
performance.

The MAE is the mean of the magnitude of
errors.

n
1
MAEz—Z =7
nlllyl il
1=

This shows that the model predictions were off
by 656.9 units on average. MAE is less
sensitive to deviations and therefore is a better
way of assessing a model where the output is so
high. Hence this is a better way of building a
picture of the model’s performance in this
instance.

The R? value gives an insight into the
proportion of the variance in the target yield
that can be explained by the model. The closer
this value is to 1.0, the more accurate the model
is. It is calculated using the sum of the squared
errors, alongside the variance in the actual
values and their means.

R2—1_— i — 9)?
e (i = 32

A higher R? value implies the model has a
better predictive accuracy. An R? value of 0.875
suggests that the model can explain §7.5% of
the variance in the given crop yield data. This
means that the model has learnt patterns within
the input features and is able to account for most
fluctuations in the yields.

While a value of 1.0 is ideal, 0.875 is still
considerably strong given the complexity of
real-world data as this is generally prone to
containing a large amount of noise.

The average distance correlation measure
captures linear and non-linear associations
between datasets and helps to show how
strongly the predictions are related to the actual
yields of each crop.
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Most yield predictions have a high distance
correlation, with the average being 0.947. This
average suggests that the model is
understanding the underlying structure of the
data significantly well and therefore is showing
the model’s ability to predict with the same
complexity as the true yields.

As both the R? value and distance correlation
are high, this means the model is accurate in
both a linear and non-linear sense.

Figure 1 shows the mean predicted and actual
yields of all crops plotted with respect to each
other. The closer the points are to the linear line,
the more accurate the average prediction was.

Mean Predicted vs. Actual Yiclds per Crop
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Figure 1: Mean Predicted vs Actual Yields per Crop.

The graph shows that the average predictions
are generally very close to the actual yield
values. Therefore, reinforcing the conclusions
given by the R? and distance correlation values.

1.3 | Performance Conclusion

To conclude, the metrics used to evaluate the
model show that it has learnt the underlying
patterns in the data very well. Having both the
R? value and average distance correlation being
high, it shows that the model has captured linear
and non-linear trends which shows its ability to
decipher the complex patterns that inherently
come from real-world data. This therefore
results in accurate and stable yield predictions.
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2. Model

This section discusses the model architecture
as well as the parameters chosen to optimise,
and the process used to do so. Also, the problem
of overfitting is discussed alongside the choices
made to prevent it.

The hyperparameter values used to achieve the
results in section 1.2 are shown in Table 2.

Optimisation
Hyperparameter Result
Optimiser AdamW
Activation Function RelLU
LR Scheduler ReduceLROnPlateau
Window Size 7
Batch Size 70
Dropout 0.005
Learning Rate 0.001878
Weight Decay 6.9e-7

Table 2: Gene values from the best performing genome at
the end of the genetic algorithm.

The optimisation process to get these values is
later discussed in Section 2.2.

2.1 | Model Architecture

The decision made for the model was to
allow it to train on all countries with viable data.
Then, to keep the output consistent, each
prediction will output 102 numbers - one for
each crop.

To create a model that was appropriate for this
task, there had to be some way to outline
region-specific characteristics. To do this, the
model had a layer for country embeddings
which transformed each country ID to a vector
of a specified size.

This allowed for the country feature to be
learnable instead of using a simple one-hot
encoding. This country vector was then
concatenated with the input data to create the
model input.

Xin = [Data,,—;, countryy,..]

If the model was training, the input data would
also include the yields for the target year.

Xin = [Datay,—;, Yieldsigrgetr, COUNETYpec]
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Then the model follows a simple feed-forward
neural network consisting of an input layer, two
hidden layers and the output layer.

The hidden layers are of sizes 1024 and 512.
Through trial and error, these were found to be
the most appropriate as the dataset is large and
complex.

After the input layer and each of the hidden
layers, the ReLU activation function was
applied to the data. This was essential to the
model as it introduces non-linearity for learning
complex patterns. ReLU makes sure there are
no negative inputs, making all negative values
0, as well as helping to avoid the ‘vanishing
gradient’ problem which in turn helps these
deep-learning models to train more effectively.

This was one of the optimised hyperparameters
and so the model with the lowest validation loss
was found using this function.

Proceeding each activation function, there was
then a dropout layer which again had a value
that was optimised to 0.005.

Both the dropout layer and country embeddings
help to encourage generalisation, which is key
to prediction models as it must account for
unseen data that may come from newly added
year or country data. This also helps to capture
the general trends that are not as specific to the
training data.

To train the model, the training data was fed
through for a given number of epochs. Each
time, the loss was calculated using the
MSELoss function. This the allowed for the
network weights to be adjusted through
backpropagation.

The process of backpropagation is essential for
a model to learn as it allows for the model to
recognise the adjustments needed to lower the
loss. The weights can then be adjusted to match
using an optimiser.

The optimiser chosen through optimisation
was AdamW. This variant of the Adam
optimiser which has weight decay. Instead of
applying L2 regularisation by adding to the
gradients, AdamW applies the decay to the
weights directly after the gradients have been
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updated. The benefit being that the model can
have better generalisation, and the training
process is more stable. Here the weight decay
was optimised to 6.9e-7.

Learning rate (LR) is important for a model to
train either efficiently or effectively. This value
controls the amount a model can update its
weights to account for the loss. With a static
learning rate, the model has the risk of
overshooting minima if the value is too high; or
having a training cycle that is extremely slow if
the value is too low. Therefore dynamic /
adaptable learning rates are a better choice.

To enhance the training efficiency, a learning
rate scheduler was chosen as an optimisable
hyperparameter ~which  resulted in a
‘ReduceLROnPlateau” scheduler being
employed. This scheduler starts off with a larger
learning rate of 0.001878 before reducing when
there is no improvement in the validation loss
after 3 epochs. This therefore helps the model
to converge more effectively and allows for
local or global minima to be reached.

In terms of model input, the window size is an
important factor. This determined the amount of
past information the model would train on. If
this was too high the model would have a
chance of overfitting, and if it was too low the
model may not have enough detail to predict
with an acceptable accuracy as historical
patterns may not be recognised. The
optimisation process found that the best
window size was 7.

The batch size was the final hyperparameter.
This determined the number of samples that
were processed before the weights within the
model were updated. Having larger batches
allows for smoother gradients, whereas smaller
batches can help with generalisation. Therefore,
a suitable balance had to be found.

After the optimisation process was completed,
a batch size of 70 was found to give the best
[performance. Allowing the model to train with
stability whilst upholding the generalisation
factor.
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2.2 | Parameter Optimisation

The hyperparameters discussed had set
ranges and options for optimisation, which are
shown in Table 3.

Parameter Value Options
Optimiser Adam | AdamW
Activation Function | ReLU | LegkyRe_LU
| Tanh | Sigmoid
CosineAnnealingLR
LR Scheduler | StepLR |
ReduceLROnPlateau
Window Size 1-9
Batch Size 16 —256
Dropout 0.0-04
Learning Rate (LR) 0.00001 —0.01
Weight Decay 0.0 — 0.00001

Table 3: Parameter Optimisation Options and Ranges.

Due to the large number of options, a parameter
sweep was seen as unsuitable, as the time taken
to cover every combination would be extremely
long. Instead, a genetic algorithm was created
to traverse the fitness landscape.

2.2.1 | Genetic Algorithm for Optimisation

Genetic algorithms (GAs) take inspiration
from natural selection and are applied here to
optimise the hyperparameters of the model.
Each solution is represented as a genome,
where each gene corresponds to a choice for
one hyperparameter, as shown in 7able 3.

Genome; = [gene;, gene,, ...gene,]

To assess the suitability of the genomes, a
fitness function is used. This function trains a
model using the hyperparameters encoded in
the genome and evaluates its performance on
the validation set. For this instance, the fitness
is inversely proportional to the average
validation loss.

1
ValidationLossy,g + 1

fitness =

The approach for the algorithm was to follow a
form of elitism. This means that genomes with
higher finesses are preferred and thus are
preserved through generations while also being
used for gene crossovers.

291086

(3]

This algorithm has four main steps:

1. Initialisation: A population of 10
genomes is generated with random
hyperparameter values.

2. Evaluation: The population is passed
through a fitness function, and each
genome is evaluated.

3. Selection: The best overall genome,
along with the top two genomes of the
generation are preserved.

4. Crossover and Mutation: The rest of
the population is generated through a
gene crossover between two of the top
three genomes. This has an 80% chance
of happening, otherwise, a random
genome from the top three is chosen to
be directly copied.

To retain diversity through the
population, there is a 20% chance of
mutation per genome per generation.
Here, a single gene is randomly
changed to a new value from its
available choices in Table 3.

Each generation is one cycle of this process.
The algorithm was run for 100 generations,
with an increasingly larger number of training
epochs to allow for deeper exploration.

Figure 2 shows the best-found average
validation loss along with the best validation
loss per generation.

Best Average Validation Loss Found Over Generations

0.28 4 === Best Overall
—— Best In Generation

0.24 1

022 1

Average Validation Loss

0.18 q

Generation

Figure 2: Best Found Genome for each Generation of the
Genetic algorithm (GA).
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As seen in the graph, the average validation loss
goes down quickly in the earlier generations
before the gradient decreases and the
exploration slows down. There is a lot of
fluctuation with the best per population results,
but the general trend remains the same.

In the later generations, the model seemingly
starts to converge, although it is shown that
there is a jump near the end. This is possibly due
to a jump between minima because of a random
mutation for one of the genes. This solidifies the
importance of maintaining population diversity
through mutation as without this, the population
would not be able to jump from local minima or
“traps”.

At the end of the optimisation process, the
results in Table 2 were produced. These values
achieved an average validation loss of 0.1812
and was used to train the final model evaluated
in Section 1.

2.3 | Overfitting

To prevent overfitting, several techniques
were used in the model design. As discussed
earlier, a dropout layer was included to
randomly disable a fraction of the neurons
whilst training. This prevents the model from
becoming too dependent on any single pattern
in the training data.

Another technique used was L2 regularisation.
This is controlled through the weight decay
hyperparameter inputted into the optimiser.
This helps discourage larger weights and
therefore penalises the model if it becomes
overly complex.

As mentioned earlier, data windows also helped
to reduce overfitting as it forced the model to
focus on a specific time frame instead of having
all the available data for previous years.
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3. Features & Labels

This section outlines the features and labels
used to train and validate the model as well as
discussing the process of extracting these from
the provided dataset, giving reason to any
choices made along the way.

As mentioned in Section I, a sliding window
approach was employed restructure the data
into a suitable format for an auto-regressive
time-series model. The main goal of this
approach was to allow the model to learn
meaningful temporal patterns across multiple
years, rather than treating each year’s data
individually.

As discussed in Section 1.1, each window
consists of the feature data for the previous x
years, where x is the size of the window. This
sequence is then paired with the crop yield data
for the subsequent year. This trains the model to
make predictions based on historical trends,
instead of using current-year features to predict
current-year yields.

Each input is generated per country to help
retain the regional and temporal context, which
is critical to this model as data varies across
different regions and countries.

3.1 | Features & Labels

The input data was made up of several
agricultural and environmental values recorded
monthly for each country over several years.
These features were compiled from multiple
datasets after being processed and represented
the conditions that may influence crop
production. Applying a sliding window over 7
consecutive years allowed the model to capture
the relevant temporal patterns.

The output data was the crop yield values for
each country for the year following the input
data. This is a vector of size 102, where each
element corresponds to a predicted yield of a
specific crop.

Before training, the features and yield values
were scaled. This ensured that the data was
within the same range and as a result ensured
numerical stability between crop types. This
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was necessary due to the variation in yield
amounts as some countries produced crops that
others didn’t, and there could be thousands of
crops difference between yields. This in turn
helped the model learn more efficiently.

Each training example was therefore made from
a country’s feature window over 7 years, and
the yields for the following year as the label.
This allowed the model to learn to predict future
yields.

3.2 | Data Extraction

The aim of the data extraction was to get
meaningful data with a low number of features
to then be used as inputs and outputs for
training and validating the model.

3.2.1 | Country Mapping

Each feature’s dataset originally recorded
values at specific latitude and longitudes. To
train a country-specific model, it was vital to
assign each point to a country. This was
achieved using a provided lookup table which
contained:

e Country Centroids
Longitude)

e Approximate Country Radii

e Country Area

e Country Name

(Latitude &

To keep the mapping process simple, each
country was approximated as a circle centred
around its centroid. This was deemed to be
sufficient for providing some geographical
accuracy alongside keeping the computation
efficient.
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For each data point, the following process was
run:

e Calculated the Euclidean distance from
the point to each country’s centroid.

e Identified the nearest centroid using
these distances.

e Compared the distance to the nearest
centroid against an adjusted radius
which was calculated by scaling the
base radius by a factor derived from the
area. This helped better represent larger
countries or those with irregular
shapes.

e If the point was within the radius, the
data point was then assigned the
respective country.

e If there was no centroid to pass the
condition, the data was marked as
“OUT OF AREA” and removed from
the dataset.

To add, all countries that did not have any
matching yield data were removed as it was
necessary to at least have some yield data to
train the model accurately.

This process allowed for definitive and
consistent country aggregation and filtered out
any data points that were ambiguous or
irrelevant. This helped maintain the integrity
and clarity of the features for training.

3.2.2 | Data Aggregation

To reduce the dimensionality of the data into
meaningful statistics, the remaining raw data
was aggregated.

Firstly, as there were multiple data points per
country per year, the data was grouped and
averaged to get a single row of data for each
country, consisting of the averages of every data
row. This was commonly on a per moth per year
basis.
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This was also done to the land coverage, where
the land cover percentage was averaged per
country with any data points that were found.

The data being given at a monthly resolution.
This meant that there were a significant number
of features causing the dimensionality to be
high.

To reduce the complexity, and to make the data

more suited to predicting annual yields, the
monthly data was aggregated to a yearly scale
by using both the mean and standard deviation
of each feature (column) for every country per
year provided.

The average represented the annual level of
each feature, and the standard deviation
allowed for variability within the year to be
captured alongside strengthening the temporal
dynamics.

By performing these aggregations on the
feature data, the result was a compact but
informative summary. This helped to reduce the
noise in the data as well as making it easier for
the model to detect per-year patterns as the
temporal scale was now aligned between the
features and labels.

3.2.3 | Missing Output Data Handling

Due to the nature of real-world data
collection, it is very probable that some data
may be missing. This would be challenging for
the sliding window approach as it relies on
continuous sequences data. If any point was
missing, the training sample would be invalid.

With the given dataset, there were no missing
years of feature data, but there were some years
missing for the label data. To address this, the
missing values were estimated using a linear
extrapolation algorithm. This was a simple
method that effectively estimates steady trends
over time. From analysing the yield values, this
was seemingly common.

By filling in these missing values, the
continuity of the data was upheld, no relevant
data was wasted, and the sliding window
approach could then be applied.
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3.2.4 | Resulting Data

For each country-year pair, the finalised
features included the mean and standard
deviations of the environmental and
agricultural data as well as a country ID that is
passed through the embedding layer discussed
in section 2.1.

3.3 | Reasoning

The steps taken to prepare the feature data were
made strategically. They aimed to reduce the
complexity and improve the generalisation.

As the monthly data had a high dimensionality,
applying a yearly aggregation to get the average
and standard deviation of each feature allowed
for the dataset to become easily managed and
helped reduce the noise that is inherent to
monthly data due to fluctuations. This pulled
the focus of the model onto long-term trends
which is ideal for predictive models.

The process of linear extrapolation provided
missing data with values estimated from
adjacent data. This helped to fill any gaps in a
logical way and ensured the temporal trend was
upheld.

Overall, by summarising the data to a yearly
resolution, the model was encouraged to learn
patterns from long-term trends instead of
having the risk of reacting to short-term
patterns. This again was a way of improving the
generalisation of the model whilst ensuring the
feature resolution matches that of the labels.
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4. Preprocessing

This section discusses any other forms of
preprocessing performed on the data, any
problems that had to be rectified, and the
reasoning behind any choices made.

Whilst cleaning the land coverage dataset, there
were some large inconsistencies that were
discovered. The file itself contained data points
across the entire world, each with a latitude,
longitude, and 17 land classes, with percentage
values where the total is 100, showing how the
land at that point is split.

To visualise this data, the choice was made to
plot the points over a world map. This is where
the issues became apparent. Firstly, when
removing points that logically cannot have any
crops growing (such as ocean, and permanent
snow / ice), the points would be removed at
seemingly incorrect places.

This led to the conclusion that the 17 land
coverage percentage columns had been shifted
by 1 to the right. Therefore, this had to be
adjusted accordingly. However, this made the
second issue apparent.

It appeared that the data points were flipped in
the y-axis (latitude). And therefore, all the
values in that column had to be inversed. This
made the data consistent with the rest and
allowed for the remaining processing to go
ahead.

In terms of file column and row naming, any
columns that were addressed by name were
manually checked for spelling errors. Other
than this, calling columns by name was
generally avoided unless the dataset was one
that was custom as spelling errors can be
common for large datasets and it is not always
possible to check manually.

It was also noticed that the yield data had
uppercase naming, therefore when working
with these, it was made sure that all names were
lowered. To add, the yield data was mixed with
production data per crop, per country, per year.
These production data rows were removed as
they were deemed irrelevant to the model due
to it only predicting yields.
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