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    In this report, a multilayer perceptron model 

(MLP) is created to predict the yields of crops 

given a countries agricultural and 

environmental data. This model is a prediction 

model and therefore considers the data from 

previous years to predict the yield from the 

following year. This form of MLP is known as 

an autoregressive model. 

The structure of this report is split into four 

main sections. First, the performance of the 

system is analysed. Following this is the model 

architecture, including the techniques used for 

optimisation. Then, the features and labels 

passed to the model are discussed before finally, 

the preprocessing techniques are outlined and 

justified. 

Together, these sections aim to provide a clear 

understanding on how the MLP was 

constructed, optimised, trained and evaluated 

for the task of multi-country yield prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Performance 

    This section discusses how the data was split 

for training and validation before evaluating the 

metrics for the model’s performance. 

1.1 | Splitting the Data 

    To create the datasets, a sliding window 

approach was used. This method segments the 

year data into overlapping sequences, known as 

“windows”. Each widow has the same fixed 

length and captures the input features 

(discussed in section 3) for a given number of 

years (window size).  

This data is then paired with the yield data (𝑦𝑡) 

for the following year. This setup allows the 

model to predict the next year’s crop yields by 

identifying the patterns in the window data 

from a given number of past years. 

𝐷𝑎𝑡𝑎𝑤=3 =  [[𝑋𝑡−3,  𝑋𝑡−2, 𝑋𝑡−1], 𝑦𝑡] 

This makes a model that can capture temporal 

dependencies which is key to a time-series style 

model. As a result, this makes the model 

generalize better for predicting yields in unseen 

years.  

To split the data into a training and validation 

set, all years that have a target year of 2020 or 

later, are used for validation, while the previous 

sequences are for training. As the data provided 

ranged from 2010 to 2022, this meant that there 

was approximately a 75:25 split. 

Each input had the size: 

1 +  (45 ∗ 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒) + 102 

Where there are 45 features per window, one 

country ID and 102 crop yields. This will be 

further discussed in section 3. 
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Once the model had been trained for several 

epochs using the windows of data for each 

country, the metrics for evaluation could be 

calculated. 

 

1.2 | Evaluation Metrics 

    The main metrics used to evaluate the model 

are the mean-squared error (MSE), R-squared 

value (𝑅2), the mean-absolute error (MAE), 

and the average distance correlation. All of 

which are shown in Table 1. 

Metric Value 

Mean Squared Error 6,531,575 

Mean Absolute Error 656.9 

R-Squared 0.875 

Avg. Distance Correlation 0.947 
 

Table 1: Evaluation Metric Values for the Final Model. 

Before any metrics could be calculated, it was 

important to un-scale the predictions and 

targets. This made sure that the metrics were 

calculated with the original units.  

As the yield values could never be negative, it 

was made sure that all predictions were clipped 

at 0 if they happened to be negative. 

MSE is calculated by averaging the differences 

between the predicted and actual values. 

𝑀𝑆𝐸 =
1

𝑛
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The model achieved a MSE of ~6.5 million on 

the validation dataset. While at first this value 

seems large, when observed relative to the 

magnitude of the yield values predicted, it is not 

surprising to see.  

The crop yields in the dataset can range from 0 

to the tens of thousands, this means that a high 

MSE is generally expected, especially in cases 

where the predictions deviate greatly from 

high-yield crops. Even a few deviations can 

cause the value to increase significantly as MSE 

tends to be sensitive to outliers. This made it a 

good metric to use as the loss measure for 

optimisation, as a lower score means the model 

is generally closer to the true values. However, 

it is not the most informative metric for 

analysis. 

Instead of MSE, other metrics such as 𝑅2 value, 

MAE and distance correlation can provide a 

better understanding of the model’s 

performance.  

The MAE is the mean of the magnitude of 

errors.  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 −  𝑦𝑖̂

𝑛

𝑖=1

| 

This shows that the model predictions were off 

by 656.9 units on average. MAE is less 

sensitive to deviations and therefore is a better 

way of assessing a model where the output is so 

high. Hence this is a better way of building a 

picture of the model’s performance in this 

instance. 

The 𝑅2 value gives an insight into the 

proportion of the variance in the target yield 

that can be explained by the model. The closer 

this value is to 1.0, the more accurate the model 

is. It is calculated using the sum of the squared 

errors, alongside the variance in the actual 

values and their means. 

𝑅2 = 1 −
∑ (𝑦𝑖 −  𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 −  𝑦̅𝑖)2𝑛
𝑖=1

  

 

A higher 𝑅2 value implies the model has a 

better predictive accuracy. An 𝑅2 value of 0.875 

suggests that the model can explain 87.5% of 

the variance in the given crop yield data. This 

means that the model has learnt patterns within 

the input features and is able to account for most 

fluctuations in the yields.  

While a value of 1.0 is ideal, 0.875 is still 

considerably strong given the complexity of 

real-world data as this is generally prone to 

containing a large amount of noise. 

The average distance correlation measure 

captures linear and non-linear associations 

between datasets and helps to show how 

strongly the predictions are related to the actual 

yields of each crop.  
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Most yield predictions have a high distance 

correlation, with the average being 0.947. This 

average suggests that the model is 

understanding the underlying structure of the 

data significantly well and therefore is showing 

the model’s ability to predict with the same 

complexity as the true yields. 

As both the 𝑅2 value and distance correlation 

are high, this means the model is accurate in 

both a linear and non-linear sense. 

Figure 1 shows the mean predicted and actual 

yields of all crops plotted with respect to each 

other. The closer the points are to the linear line, 

the more accurate the average prediction was. 
 

 

Figure 1: Mean Predicted vs Actual Yields per Crop. 

The graph shows that the average predictions 

are generally very close to the actual yield 

values. Therefore, reinforcing the conclusions 

given by the 𝑅2 and distance correlation values. 

 

1.3 | Performance Conclusion 

    To conclude, the metrics used to evaluate the 

model show that it has learnt the underlying 

patterns in the data very well. Having both the 

𝑅2 value and average distance correlation being 

high, it shows that the model has captured linear 

and non-linear trends which shows its ability to 

decipher the complex patterns that inherently 

come from real-world data. This therefore 

results in accurate and stable yield predictions. 

 

 

 

2. Model 

    This section discusses the model architecture 

as well as the parameters chosen to optimise, 

and the process used to do so. Also, the problem 

of overfitting is discussed alongside the choices 

made to prevent it.  

The hyperparameter values used to achieve the 

results in section 1.2 are shown in Table 2. 

 

Hyperparameter 
Optimisation 

Result 

Optimiser AdamW 

Activation Function ReLU 

LR Scheduler ReduceLROnPlateau 

Window Size 7 

Batch Size 70 

Dropout 0.005 

Learning Rate 0.001878 

Weight Decay 6.9e-7 
 

Table 2: Gene values from the best performing genome at 

the end of the genetic algorithm. 

The optimisation process to get these values is 

later discussed in Section 2.2. 
 

2.1 | Model Architecture 

    The decision made for the model was to 

allow it to train on all countries with viable data. 

Then, to keep the output consistent, each 

prediction will output 102 numbers - one for 

each crop. 

To create a model that was appropriate for this 

task, there had to be some way to outline 

region-specific characteristics. To do this, the 

model had a layer for country embeddings 

which transformed each country ID to a vector 

of a specified size.  

This allowed for the country feature to be 

learnable instead of using a simple one-hot 

encoding. This country vector was then 

concatenated with the input data to create the 

model input.  

𝑋𝑖𝑛 = [𝐷𝑎𝑡𝑎𝑤=𝑖 , 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑣𝑒𝑐] 

If the model was training, the input data would 

also include the yields for the target year. 

𝑋𝑖𝑛 =  [𝐷𝑎𝑡𝑎𝑤=𝑖 , 𝑌𝑖𝑒𝑙𝑑𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑣𝑒𝑐] 
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Then the model follows a simple feed-forward 

neural network consisting of an input layer,  two 

hidden layers and the output layer.  

The hidden layers are of sizes 1024 and 512. 

Through trial and error, these were found to be 

the most appropriate as the dataset is large and 

complex.  

After the input layer and each of the hidden 

layers, the ReLU activation function was 

applied to the data. This was essential to the 

model as it introduces non-linearity for learning 

complex patterns. ReLU makes sure there are 

no negative inputs, making all negative values 

0, as well as helping to avoid the ‘vanishing 

gradient’ problem which in turn helps these 

deep-learning models to train more effectively. 

This was one of the optimised hyperparameters 

and so the model with the lowest validation loss 

was found using this function.  

Proceeding each activation function, there was 

then a dropout layer which again had a value 

that was optimised to 0.005. 

Both the dropout layer and country embeddings 

help to encourage generalisation, which is key 

to prediction models as it must account for 

unseen data that may come from newly added 

year or country data. This also helps to capture 

the general trends that are not as specific to the 

training data.  

To train the model, the training data was fed 

through for a given number of epochs. Each 

time, the loss was calculated using the 

MSELoss function. This the allowed for the 

network weights to be adjusted through 

backpropagation. 

The process of backpropagation is essential for 

a model to learn as it allows for the model to 

recognise the adjustments needed to lower the 

loss. The weights can then be adjusted to match 

using an optimiser. 

 The optimiser chosen through optimisation 

was AdamW. This variant of the Adam 

optimiser which has weight decay. Instead of 

applying L2 regularisation by adding to the 

gradients, AdamW applies the decay to the 

weights directly after the gradients have been 

updated. The benefit being that the model can 

have better generalisation, and the training 

process is more stable.  Here the weight decay 

was optimised to 6.9e-7. 

Learning rate (LR) is important for a model to 

train either efficiently or effectively. This value 

controls the amount a model can update its 

weights to account for the loss. With a static 

learning rate, the model has the risk of 

overshooting minima if the value is too high; or 

having a training cycle that is extremely slow if 

the value is too low. Therefore dynamic / 

adaptable learning rates are a better choice. 

To enhance the training efficiency, a learning 

rate scheduler was chosen as an optimisable 

hyperparameter which resulted in a 

‘ReduceLROnPlateau’ scheduler being 

employed. This scheduler starts off with a larger 

learning rate of 0.001878 before reducing when 

there is no improvement in the validation loss 

after 3 epochs. This therefore helps the model 

to converge more effectively and allows for 

local or global minima to be reached.  

In terms of model input, the window size is an 

important factor. This determined the amount of 

past information the model would train on. If 

this was too high the model would have a 

chance of overfitting, and if it was too low the 

model may not have enough detail to predict 

with an acceptable accuracy as historical 

patterns may not be recognised. The 

optimisation process found that the best 

window size was 7. 

The batch size was the final hyperparameter. 

This determined the number of samples that 

were processed before the weights within the 

model were updated. Having larger batches 

allows for smoother gradients, whereas smaller 

batches can help with generalisation. Therefore, 

a suitable balance had to be found. 

After the optimisation process was completed, 

a batch size of 70 was found to give the best 

[performance. Allowing the model to train with 

stability whilst upholding the generalisation 

factor. 
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2.2 | Parameter Optimisation  

    The hyperparameters discussed had set 

ranges and options for optimisation, which are 

shown in Table 3. 

Parameter Value Options 

Optimiser Adam | AdamW 
 4 

 

Activation Function ReLU | LeakyReLU 

| Tanh | Sigmoid 

 

LR Scheduler 

CosineAnnealingLR 

| StepLR | 

ReduceLROnPlateau  

Window Size 1 – 9 

Batch Size 16 – 256 

Dropout 0.0 – 0.4 

Learning Rate (LR) 0.00001 – 0.01 

Weight Decay 0.0 – 0.00001 
 

Table 3: Parameter Optimisation Options and Ranges. 

Due to the large number of options, a parameter 

sweep was seen as unsuitable, as the time taken 

to cover every combination would be extremely 

long. Instead, a genetic algorithm was created 

to traverse the fitness landscape. 
 

2.2.1 | Genetic Algorithm for Optimisation 

    Genetic algorithms (GAs) take inspiration 

from natural selection and are applied here to 

optimise the hyperparameters of the model. 

Each solution is represented as a genome, 

where each gene corresponds to a choice for 

one hyperparameter, as shown in Table 3.  

𝐺𝑒𝑛𝑜𝑚𝑒𝑖 = [𝑔𝑒𝑛𝑒1, 𝑔𝑒𝑛𝑒2, … 𝑔𝑒𝑛𝑒𝑛] 

To assess the suitability of the genomes, a 

fitness function is used. This function trains a 

model using the hyperparameters encoded in 

the genome and evaluates its performance on 

the validation set. For this instance, the fitness 

is inversely proportional to the average 

validation loss. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑠𝑠𝐴𝑣𝑔 + 1
 

The approach for the algorithm was to follow a 

form of elitism. This means that genomes with 

higher finesses are preferred and thus are 

preserved through generations while also being 

used for gene crossovers. 

This algorithm has four main steps: 

1. Initialisation: A population of 10 

genomes is generated with random 

hyperparameter values. 

2. Evaluation: The population is passed 

through a fitness function, and each 

genome is evaluated. 

3. Selection: The best overall genome, 

along with the top two genomes of the 

generation are preserved. 

4. Crossover and Mutation: The rest of 

the population is generated through a 

gene crossover between two of the top 

three genomes. This has an 80% chance 

of happening, otherwise, a random 

genome from the top three is chosen to 

be directly copied. 
 

To retain diversity through the 

population, there is a 20% chance of 

mutation per genome per generation. 

Here, a single gene is randomly 

changed to a new value from its 

available choices in Table 3. 

Each generation is one cycle of this process. 

The algorithm was run for 100 generations, 

with an increasingly larger number of training 

epochs to allow for deeper exploration. 

Figure 2 shows the best-found average 

validation loss along with the best validation 

loss per generation.  

 

 

Figure 2: Best Found Genome for each Generation of the 

Genetic algorithm (GA). 
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As seen in the graph, the average validation loss 

goes down quickly in the earlier generations 

before the gradient decreases and the 

exploration slows down. There is a lot of 

fluctuation with the best per population results, 

but the general trend remains the same.  

In the later generations, the model seemingly 

starts to converge, although it is shown that 

there is a jump near the end. This is possibly due 

to a jump between minima because of a random 

mutation for one of the genes. This solidifies the 

importance of maintaining population diversity 

through mutation as without this, the population 

would not be able to jump from local minima or 

“traps”. 

At the end of the optimisation process, the 

results in Table 2 were produced. These values 

achieved an average validation loss of 0.1812 

and was used to train the final model evaluated 

in Section 1.  

 

2.3 | Overfitting 

    To prevent overfitting, several techniques 

were used in the model design. As discussed 

earlier, a dropout layer was included to 

randomly disable a fraction of the neurons 

whilst training. This prevents the model from 

becoming too dependent on any single pattern 

in the training data. 

Another technique used was L2 regularisation. 

This is controlled through the weight decay 

hyperparameter inputted into the optimiser. 

This helps discourage larger weights and 

therefore penalises the model if it becomes 

overly complex. 

As mentioned earlier, data windows also helped 

to reduce overfitting as it forced the model to 

focus on a specific time frame instead of having 

all the available data for previous years. 

 

 

 

 

 

3. Features & Labels 

    This section outlines the features and labels 

used to train and validate the model as well as 

discussing the process of extracting these from 

the provided dataset, giving reason to any 

choices made along the way.  

As mentioned in Section 1, a sliding window 

approach was employed restructure the data 

into a suitable format for an auto-regressive 

time-series model. The main goal of this 

approach was to allow the model to learn 

meaningful temporal patterns across multiple 

years, rather than treating each year’s data 

individually.  

As discussed in Section 1.1, each window 

consists of the feature data for the previous x 

years, where x is the size of the window. This 

sequence is then paired with the crop yield data 

for the subsequent year. This trains the model to 

make predictions based on historical trends, 

instead of using current-year features to predict 

current-year yields. 

Each input is generated per country to help 

retain the regional and temporal context, which 

is critical to this model as data varies across 

different regions and countries. 
 

3.1 | Features & Labels 

    The input data was made up of several 

agricultural and environmental values recorded 

monthly for each country over several years. 

These features were compiled from multiple 

datasets after being processed and represented 

the conditions that may influence crop 

production. Applying a sliding window over 7 

consecutive years allowed the model to capture 

the relevant temporal patterns.  

The output data was the crop yield values for 

each country for the year following the input 

data. This is a vector of size 102, where each 

element corresponds to a predicted yield of a 

specific crop.  

Before training, the features and yield values 

were scaled. This ensured that the data was 

within the same range and as a result ensured 

numerical stability between crop types. This 
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was necessary due to the variation in yield 

amounts as some countries produced crops that 

others didn’t, and there could be thousands of 

crops difference between yields. This in turn 

helped the model learn more efficiently. 

Each training example was therefore made from 

a country’s feature window over 7 years, and 

the yields for the following year as the label. 

This allowed the model to learn to predict future 

yields. 

 

3.2 | Data Extraction 

    The aim of the data extraction was to get 

meaningful data with a low number of features 

to then be used as inputs and outputs for 

training and validating the model. 

 

3.2.1 | Country Mapping 

    Each feature’s dataset originally recorded 

values at specific latitude and longitudes. To 

train a country-specific model, it was vital to 

assign each point to a country. This was 

achieved using a provided lookup table which 

contained: 

• Country Centroids (Latitude & 

Longitude) 

• Approximate Country Radii 

• Country Area 

• Country Name 

To keep the mapping process simple, each 

country was approximated as a circle centred 

around its centroid. This was deemed to be 

sufficient for providing some geographical 

accuracy alongside keeping the computation 

efficient.  

 

 

 

 

 

 

For each data point, the following process was 

run: 

• Calculated the Euclidean distance from 

the point to each country’s centroid. 
 

• Identified the nearest centroid using 

these distances. 

 

 

 
 

• Compared the distance to the nearest 

centroid against an adjusted radius 

which was calculated by scaling the 

base radius by a factor derived from the 

area. This helped better represent larger 

countries or those with irregular 

shapes. 
 

• If the point was within the radius, the 

data point was then assigned the 

respective country. 
 

• If there was no centroid to pass the 

condition, the data was marked as 

“OUT OF AREA” and removed from 

the dataset. 

 

To add, all countries that did not have any 

matching yield data were removed as it was 

necessary to at least have some yield data to 

train the model accurately. 

This process allowed for definitive and 

consistent country aggregation and filtered out 

any data points that were ambiguous or 

irrelevant. This helped maintain the integrity 

and clarity of the features for training. 

 

3.2.2 | Data Aggregation 

    To reduce the dimensionality of the data into 

meaningful statistics, the remaining raw data 

was aggregated. 

Firstly, as there were multiple data points per 

country per year, the data was grouped and 

averaged to get a single row of data for each 

country, consisting of the averages of every data 

row. This was commonly on a per moth per year 

basis. 
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This was also done to the land coverage, where 

the land cover percentage was averaged per 

country with any data points that were found. 

The data being given at a monthly resolution. 

This meant that there were a significant number 

of features causing the dimensionality to be 

high. 

 To reduce the complexity, and to make the data 

more suited to predicting annual yields, the 

monthly data was aggregated to a yearly scale 

by using both the mean and standard deviation 

of each feature (column) for every country per 

year provided. 

The average represented the annual level of 

each feature, and the standard deviation 

allowed for variability within the year to be 

captured alongside strengthening the temporal 

dynamics.  

By performing these aggregations on the 

feature data, the result was a compact but 

informative summary. This helped to reduce the 

noise in the data as well as making it easier for 

the model to detect per-year patterns as the 

temporal scale was now aligned between the 

features and labels.  

 

3.2.3 | Missing Output Data Handling 

    Due to the nature of real-world data 

collection, it is very probable that some data 

may be missing. This would be challenging for 

the sliding window approach as it relies on 

continuous sequences data. If any point was 

missing, the training sample would be invalid. 

With the given dataset, there were no missing 

years of feature data, but there were some years 

missing for the label data. To address this, the 

missing values were estimated using a linear 

extrapolation algorithm. This was a simple 

method that effectively estimates steady trends 

over time. From analysing the yield values, this 

was seemingly common. 

By filling in these missing values, the 

continuity of the data was upheld, no relevant 

data was wasted, and the sliding window 

approach could then be applied. 

 

3.2.4 | Resulting Data 

    For each country-year pair, the finalised 

features included the mean and standard 

deviations of the environmental and 

agricultural data as well as a country ID that is 

passed through the embedding layer discussed 

in section 2.1. 

3.3 | Reasoning 

The steps taken to prepare the feature data were 

made strategically. They aimed to reduce the 

complexity and improve the generalisation.  

As the monthly data had a high dimensionality, 

applying a yearly aggregation to get the average 

and standard deviation of each feature allowed 

for the dataset to become easily managed and 

helped reduce the noise that is inherent to 

monthly data due to fluctuations. This pulled 

the focus of the model onto long-term trends 

which is ideal for predictive models. 

The process of linear extrapolation provided 

missing data with values estimated from 

adjacent data. This helped to fill any gaps in a 

logical way and ensured the temporal trend was 

upheld. 

Overall, by summarising the data to a yearly 

resolution, the model was encouraged to learn 

patterns from long-term trends instead of 

having the risk of reacting to short-term 

patterns. This again was a way of improving the 

generalisation of the model whilst ensuring the 

feature resolution matches that of the labels. 
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4. Preprocessing 

    This section discusses any other forms of 

preprocessing performed on the data, any 

problems that had to be rectified, and the 

reasoning behind any choices made.  

Whilst cleaning the land coverage dataset, there 

were some large inconsistencies that were 

discovered. The file itself contained data points 

across the entire world, each with a latitude, 

longitude, and 17 land classes, with percentage 

values where the total is 100, showing how the 

land at that point is split. 

To visualise this data, the choice was made to 

plot the points over a world map. This is where 

the issues became apparent. Firstly, when 

removing points that logically cannot have any 

crops growing (such as ocean, and permanent 

snow / ice), the points would be removed at 

seemingly incorrect places.  

This led to the conclusion that the 17 land 

coverage percentage columns had been shifted 

by 1 to the right. Therefore, this had to be 

adjusted accordingly. However, this made the 

second issue apparent. 

It appeared that the data points were flipped in 

the y-axis (latitude). And therefore, all the 

values in that column had to be inversed. This 

made the data consistent with the rest and 

allowed for the remaining processing to go 

ahead. 

In terms of file column and row naming, any 

columns that were addressed by name were 

manually checked for spelling errors. Other 

than this, calling columns by name was 

generally avoided unless the dataset was one 

that was custom as spelling errors can be 

common for large datasets and it is not always 

possible to check manually. 

It was also noticed that the yield data had 

uppercase naming, therefore when working 

with these, it was made sure that all names were 

lowered. To add, the yield data was mixed with 

production data per crop, per country, per year. 

These production data rows were removed as 

they were deemed irrelevant to the model due 

to it only predicting yields. 

 


